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Foreword

This report describes the modifications to, and the operation of, the

Euler flow solver code, MERCURY, and the auxiliary code, SETUP, as

implemented for use on the Digital Equipment VAX series of computers.

The original version of MERCURY and SETUP were coded by William Z.

Strang of WRDC/FIMM. MERCURY was optimized, in terms of input/output

(I/O) processing, data storage, and vector operations, for use on the

CRAY series of supercomputers.

Due to interest from potential users of the code who did not have

access to a CRAY for various reasons, a version of MERCURY was

developed for use on an the VAX computers. The primary difference,

from the point of view of the user (in addition to the processing

speed), between the CRAY and VAX versions of MERCURY is in the method

of invoking the code for execution.

The auxiliary code, SETUP, was rehosted onto the VAX, and modified

to create the data files required by the VAX version of MERCURY. This

modified version of SETUP is called SETUPV.

This report, then, describes the method of developing the grid,

creating the necessary files for MERCURY, and executing the code.

Thanks are in order to William Z. Strang, for his patient assistance

inxplaining the AQIO (CRAY I/O) routines.

VThe work reported herein was performed during the period 1 December

1989 to 30 April 1990.

This work has been reviewed and is approved.

Marquart Dr. Don Kinsey

Aeronautical Engineer /,GrPup Leader

Aerodynamic Methods Group *-'kei oynamic Methods Group
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By
Diltribution/
AvallabilitY Codes

Dist . I Special



Section I

Introduction

This report describes the use and operation of the MERCURY flow

solver code on the Digital Equipment VAX series of computers. MERCURY

is a multiple grid block flow solver which solves the Euler set of

equations (inviscid flow).

The MERCURY code was developed and written by William Z. Strang of

WRDC/FIMM for use on the CRAY supercomputer (reference Appendix D).

As such, it was optimized to take full advantage of CRAY-specific I/O

routines which greatly reduce the I/O time required. Since a large

percentage of execution time is spent in the I/O process when using a

multiblock code such as this, the optimization of the I/O process is

essential to achieving acceptable turnaround times for the solution.

In addition to the CRAY-specific I/O routines, MERCURY was developed

using one-dimensional arrays to reduce memory overhead and improve

vectorization.

While the optimization of the I/O routines for operation on the CRAY

makes MERCURY an extremely fast code, it also makes the code much less

portable. Other machines do not permit the type of I/O which makes the

CRAY so desirable. Thus, when it is desired to convert the code to run

on another host machine, the I/O routines must be changed to work on

the new host, while still maintaining the correct data structure and

logical order. g) (

The changes made to the MERCURY I/O routines are outlined in the

following section.
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Section II

CRAY to VAX Conversion of MERCURY

1/0 Changes

The Digital Equipment VAX series of computers is a very popular and

well-supported line of computational machines. Since they are

established in industry, many offices have them, either in the smaller,

"personal" versions (i.e. the MicroVAX) or in larger versions. In

addition to their cost effectiveness and general popularity, they are

well suited to placing in the types of environments required for secure

processing.

One capability that the VAX does not possess, however, is that of

extremely fast I/O such as the type which exists on the CRAY

supercomputer, called Asynchronous Queued I/O (AQIO). The VAX, through

FORTRAN, may use only the standard I/O routines available to FORTRAN.

Thus, all AQIO routines in MERCURY needed to be changed to standard I/O

routines for the VAX version.

These VAX FORTRAN routines, however, still need to input and output

the data in the order that the MERCURY code expects it, in order to

avoid major recoding and restructuring of MERCURY. Thus, a major

portion of the translation of MERCURY from the CRAY version to the VAX

version involved the work of restructuring the I/O calls to produce

files which would be usable by MERCURY, but that were created using

standard FORTRAN I/0 routino7.

The type of I/O used is called "direct access I/O", and is one of the

standard types of data I/O used on machines such as the VAX. The files
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produced by direct access I/O may contain any number of user-specified-

length records, each of which is directly accessible (hence the name)

by reference to its record number.
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Section III

Running MERCURY on the VAX

Creating the Grid

As with any CFD flow solver, the first step in the solution process

is to produce a grid which discretizes the solid surface and flow field

geometries. This grid may be created through any means desired,

provided that the output file matches the configuration requirements

listed in the MERCURY User's Manual (Appendix D).

Some sort of grid evaluation tool should be run on the grid to be

sure that the grid does not contain lefthanded portions, negative cell

volumes, etc.

The grid may be of either binary or ASCII format, but be warned that

an ASCII file is much larger than a binary file which contains the same

data. In addition, reading the grid data from an ASCII file will take

considerably longer than reading it from a binary file, although this

only happens once at the beginning of each run. The flow solver data

contains a switch to tell the flow solver whether the grid is in ASCII

or binary.

Once the grid has been created, the flow solver job file may be

filled in to match the desired conditions and run parameters.

Creating the Flow Solver Job File

The flow solver job file (example in Appendix B) contains the VMS

commands necessary to compile and/or execute a version of MERCURY for

a particular flow configuration, as well as the data necessary to
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describe the flow conditions, the dimensions of the grid, and the

parameters for the particular computer run.

The layout of the flow solver job file on the VAX is somewhat similar

to that on the CRAY, in that the flow data is embedded in the same file

as the commands which invoke the code.

The first three lines of the flow solver data (which is embedded in

the flow solver job file code) contain the full VAX pathnames of the

output scratch file, the input scratch file, and the restart file,

respectively. Note that full pathnames must be used. The MERCURY code

reads these file names, and assigns them to the appropriate I/O device

numbers.

The input and output scratch files are the files which MERCURY uses

to read and write the "temporary" flow variable data during execution.

These files exist only during the code execution, and are removed by

the VAX operating system after the completion of the code run. The

only caution here is to be sure that the path specified for these files

contains enough empty space for the files. Should the files overrun

the empty space, the code will crash, since no error checking is

performed for this circumstance. See Appendix D for details on the

memory and storage requirements for MERCURY runs.

The restart file is the file into which all grid and flow data is

written at the end of a run. This file is very important, since it is

the basis for the start of the next run. If this file should be

destroyed, all work done by the previous run(s) will go with it, and

it will be time to start all over. Be sure that the path specified for

this file has plenty of empty space.
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The rest of the data contained in the flow solver data file is well

documented in the MERCURY User's Manual. The only deviation on the

VAX version from the CRAY version is that the VAX version does not

permit "I/O DEVICE" selection. On the CRAY version of MERCURY, this

option told the code whether the user wanted to use the standard hard

disk or the solid-state storage device (SSD). Since the VAX does not

support an SSD, this option was removed from the data input.

Creating the Connectivity and Plot Files

For the CRAY version of MERCURY, two data files are required which

contain the data relating the connections between the grid blocks and

the desired plot data. Each of these two files contains two portions,

a "parameter" portion, which basically contains the necessary

dimensions, and a data portion, which contains the actual data. These

data files are created using the auxiliary program SETUP.

The CRAY has a means of splitting out the required data from the two

data files to use as the four "include" files in the code. The VAX

does not support the same type of structure. Thus, the four "include"

files are created by the VAX version of SETUP, called SETUPV.

The basic operation of SETUPV are identical to those of SETUP. The

only exception is that the user will be prompted for the names of the

four data files to be created. Note that the prompts for the data file

names show the "include" file names by which the data files will be

accessed in the MERCURY code.

Appendix C contains sample data files for the connectivity and plot

data. Refer to Appendix D for a full description of creation of the
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connectivity and plot data files using SETUP (SETUPV).

Modifying the Execution Command File for Execution

A sample command file for submission of a MERCURY run on a batch

queue is provided in Appendix A, and the list of data descriptions is

shown in Table A.1. This command file merely submits the job file for

execution on a specific batch queue, names the job, and redirects the

log file to the desired location and file name. This file may be

modified as desired to match the conditions required.

Modifiving the Job File for Execution

A sample job file is shown in Appendix B, and the list of data

descriptions is shown in Figure B.1.

This job file performs the task of compiling (or not compiling) the

MERCURY code for a specific flow problem solution on the VAX, then

links in the proper data sets and executes the MERCURY code. It also

contains the data required by the MERCURY code for execution, so that

a separate data file is not required. The basic operation of the job

file is as follows:

if (compilation is required) then

assign the "include" file names;

compile the MERCURY code;

link the MERCURY code;

else

do not compile the code;

end if
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if (MERCURY is to be run) then

assign names for the output, grid and restart files;

run the MERCURY flow solver;

deassign the FORTRAN units;

copy the MERCURY restart file to the desired file;

delete the MERCURY restart file;

purge the restart file;

end if;

quit.

The job file listed in Appendix B is sufficient to perform the tasks

required to achieve flow solutions using MERCURY. It may, however, be

customized to perform any additional tasks, as desired. A description

of the major portions of the sample job file follows. Note that,

although line numbers appear in the job file in Appendix B, they are

for reference purposes only, and do not appear in the job file on the

VAX. In all cases, the variables which must be changed by the user to

match his specific situation are displayed in capital letters in the

sample job file.

The first line containing information which the user must modify is

on line 1. If the run is an initial run for a flow configuration, the

value in the parentheses must be 'COMPILE'. This will instruct the

job to compile the MERCURY code, with the appropriate data files, for

the particular flow problem under consideration. For subsequent runs,

the value should be changed to 'NOCOMPILE' to prevent compilation.

Line 2 contains the variable which is used to determine whether or

not the MERCURY code is to be run. This permits the user to compile
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* executed. If the value of runswitch is 'NORUN', then lines 22 through

33 are not executed. If the value of runswitch is 'RUN' then lines 22

through 33 are executed, and lines 34 through 36 are skipped.

Line 23 assigns the desired output file name with the logical device

name 'forOO6' (FORTRAN unit 6). Replace NOZZLE.OUT with the file name

into which you want the output data saved.

Line 24 assigns the desired grid file name with the logical device

name 'forOO4' (FORTRAN unit 4). Replace 'VNOZZBIN.CST' with the file

name that corresponds to your grid data file.

Line 25 assigns the desired restart file name to the logical device

name 'for001' (FORTRAN unit 1). MERCURY uses FORTRAN unit 1 to read

in the restart file which was created from a previous run. If this is

the initial run for a flow solution, the VAX will probably give a

warning message that the restart file named on this line was not found,

but this is not a problem. Replace 'NOZZR.DAT' with the file name that

you want to be the restart file.

Line 26 initiates the executable which was created during the linking

step (line 11). Therefore, change 'NOZMERC' to match the name of the

file which contains the MERCURY executable.

Note that the data required to be read by the flow solver is

contained between numbered lines 26 and 27 in the sample job file.

This data will be read by MERCURY upon execution of the code. This

data is fully explained in the MERCURY User's Manual (CRAY version),

Appendix D, with the exception of the following items:

The first three lines contain the names of the output scratch

file, the input scratch file and the restart file to be created by
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MERCURY, respectively. It is important to use the full pathnames for

these files, and to be sure that there is plenty of space available on

the specified devices for these files. If the device runs out of room

during code execution, the code will crash, and the data from the run

will be lost.

Also, the CRAY version of MERCURY permitted the user to specifiy

whether or not he wanted to use the solid-state storage device (SSD)

for files. The VAX does not support this option, and therefore the

input for that option has been removed from the VAX version of MERCURY.

Lines 27 through 29 simply 'deassign' FORTRAN units 1, 4 and 6.

Line 30 copies the 'RESTART.DAT' file, whose name was specified in

the flow solver data file and which was created by MERCURY, into the

name specified by 'NOZZR.DAT'. Be sure that the file name that you

replace 'NOZZR.DAT' with matches the file name that you specified on

line 25, and that 'RESTART.DAT' matches the file name specified for the

restart file in the flow solver data. Otherwise, the command file will

not use the correct file for the restart file on the next run.

Line 31 simply removes the file 'RESTART.DAT' from the disk. This

file is no longer needed, since you have copied it to your desired

restart file name on line 30 ('NOZZR.DAT').

Line 32 purges the 'NOZZR.DAT' files to reduce the amount of space

used by old versions of the restart file. Since these files are quite

large, it is important to not keep too many old versions lying around.

However, if it is desired to keep at least one old version (for

safety's sake), remove this purge command from the file.

Again, the job file may be modified as desired to perform additional
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tasks, but the job file given will perform all of the tasks necessary

to achieve flow solutions using MERCURY.

NOTE: Due to the long run times to be expected on the VAX, it is best

to submit the job file for execution as a batch job by using the sample

command file shown in Appendix A.

Sizing the Grid for the VAX

The memory availability on the VAX is not unlimited. Since MERCURY

only loads into memory, and operates on, one grid block at a time, the

number of blocks which may exist in your grid is virtually unlimited.

However, the size of the largest grid block must be less than the

amount of memory which is left when you subtract the MERCURY executable

code size from the total amount of memory in your machine (that is core

memory, not disk storage space).

The following method may be used to determine the approximate size

of the largest block which may exist in your grid:

1. Determine the amount of core memory on your VAX (ask

your system manager) in words.

2. Determine the approximate size of the executable MERCURY

code on your VAX in words.

3. Subtract the executable MERCURY size from the available

memory. This will give you net memory.

4. Divide the net memory by 30.0 to arrive at the approximate

maximum number of grid points which may exist in the

largest grid block. Note that this value is only a very

approximate quantity, since the exact MERCURY executable
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size will be determined by the maximum grid block size.

Some experimenting with the block size for your particular

machine may be necessary.

One of the keys to obtaining acceptable MERCURY run times on the VAX

is to use block sizes which are as large as possible, and therefore

reduce or eliminate the I/O slowdown. Since grid blocks are swapped

into and out of core memory after every iteration, reducing the number

of blocks is a major step toward lowering the time required for a

solution.

Test Run Results

Sample test runs were performed to correlate the VAX version of

MERCURY to the CRAY version. The configuration used was internal flow

in a converging nozzle at low subsonic velocities. The grid consisted

of two blocks, for a total of approximately 51,000 grid points.

The numerical values obtained for the output parameters (e.g.

residuals, force and moment coefficients, etc.) were virtually

identical between the CRAY and VAX versions (within the roundoff error

of the machines).

The CPU times required to achieve the solutions, however, were quite

different. Based on the CPU time required to perform a given number

of iterations on the same grid and flow configuration, the VAX is

approximately 80 times slower than the ASD CRAY X-MP/216 (with the CRAY

running under the Cray Operating System (COS)). The VAX used was a

VAX 8650.
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Section IV

Conclusions

A version of the multiple block Euler code, MERCURY, has been

developed for use on the Digital Equipment VAX series of computers.

Having the capability of running a detailed, flexible CFD code such as

MERCURY, on a machine of the VAX caliber will enhance the flow analysis

capabilities of organizations which either do not have access to a CRAY

supercomputer, or which must operate in a secure environment.

Sample runs of the VAX version of MERCURY have been made to compare

the results against those obtained on the Aeronautical Systems Division

(ASD) CRAY at Wright-Patterson Air Force Base. Both single block and

multiple block grid configurations have been run and compared. The

results obtained from the VAX are identical (within numerical roundoff

error) to those obtained on the CRAY.

If there are any questions or problems, contact:

Jed E. Marquart

WRDC/FIMM

WPAFB, OH 45433-6553

(513)255-4052
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Appendix A

Sample Command File for Batch Execution of MERCURY

Line 1: $ sub/que=BIG$BATCH$1/ -

log_file=NOZZLE2.LOG/noprint/notify/name=CORNSTALK -

RUNMERC.JOB

Line 2: $ exit



Table A.1

Summary of Sample Command File Definitions

Line #ame
1 BIG$BATCH$1 The name of the batch queue on which the

job is to be run.
1 NOZZLE2.LOG The full pathname and file name of the

destination for the log file from the

batch job run.

1 CORNSTALK The name to be assigned to the job on

the batch queue.

1 RUNMERC.JOB The name of the job file which is to

be submitted as a batch job on the

batch queue.



Appendix B

Sample Flow Solver Job File

Line 1: $ compswitch = "NOCOMPILE"

Line 2: $ runswitch "RUN"

Line 3: $ if compswitch .nes. "COMPILE" then goto nocomp

Line 4: $ write sys$output " Compiling MERCURY ....... please wait"
Line 5: $ assign PARA.DAT para

Line 6: $ assign PARAP.DAT parap

Line 7: $ assign CONN.DAT conn

Line 8: $ assign PLOT.DAT plot

Line 9: $ for/object=NOZMERC/list=nozmerc.lst mercvax.for

Line 10: $ write sys$output " Now linking MERCURY ....... please

wait"

Line 11: $ link NOZMERC

Line 12: $ deassign para

Line 13: $ deassign parap

Line 14: $ deassign conn

Line 15: $ deassign plot

Line 16: $ goto runcheck

Line 17: $ nocomp:

Line 18: $ write sys$output " No compilation was requested"

Line 19: $ goto runcheck

Line 20: $ runcheck:

Line 21: $ if runswitch .nes. "RUN" then goto norun

Line 22: $ write sys$output "Now executing MERCURY ....... please

wait (patiently)"

Line 23: $ assign DISK$AWC_4: [MARQUART.MERCURY]NOZZLE.OUT forOO6

Line 24: $ assign DISK$AWC_4:[MARQUART.MERCURY]VNOZZBIN.CST

for004

Line 25: $ assign DISK$AWC4:[MARQUART.MERCURY]NOZZR.DAT for001

Line 26: $ run DISK$AWC_4: [MARQUART.MERCURY]NOZMERC

'scratch:[marquart]scratcho.dat,

'scratch:[marquart]scratchi.dat'

'scratch:[marquartJrestart.dat'

SUBSONIC NOZZLE-2 BLOCKS Mi-0.158 Mo-0.5 01-May-1990



JOB CONTROL PARAMETERS

START OPTION (0 = INITIAL RUN, 1 = RESTART, 2 = RESTART WITH NEW GRID)

0

GRID FORMAT FLAG (0=BINARY, 1=*)

0

ALGORITHM PARAMETERS
* ********** ***** **** *** **

#RUNGE-KUTTA STAGES

3
#ITER #/PLOT #ITER/(TIME STEP)

10 -1 -1

CFL TIME ACCURATE (0=NO, 1=YES)?

4. 0

VIS2 VIS4 SMOOTHING DAMPING

-1. -1. -1. -1.
TRANSONIC ENTHALPY DAMPING (0=NO, 1=YES)?

0

FLOW CONDITION PARAMETERS
** ***** ** ** **** ** *** * **** **

FREESTREAM MACH NO. FREESTREAM ALPHA FREESTREAM BETA
.158 0.0 0.0

SINK MACH NO. SINK ALPHA SINK BETA
0.5 -1. -1.

SOURCE MACH NO. SOURCE ALPHA SOURCE BETA
.158 -1. -1.

REFERENCE MACH NO. FOR CP'S, FORCES AND MOMENTS

-1.
RATIO OF SPECIFIC HEATS SOURCE NPR

-1. -1.
*** ** * * ** ***** ********

GEOMETRY PARAMETERS
** *** ** ** ** * ********** *** **



COORDINATE SYSTEM (0 - FLO57 SYSTEM, 1 - PANEL CODE SYSTEM)
1

REFERENCE AREA

78.5398

X,Y,Z COORDINATES OF MOMENT REFERENCE POINT

0.0 0.0 0.0

REFERENCE LENGTHS FOR MOMENTS ABOUT X-,Y- AND Z-AXIS

5.000 5.000 5.000

BLOCK INFORMATION
*** ** * *** ************

2

30 30 28

31 30 28

Line 27: $ deassign for001

Line 28: $ deassign for004

Line 29: $ deassign for006

Line 30: $ copy SCRATCH: [MARQUART]RESTART.DAT -

DISK$AWC4: [MARQUART.MERCURY)NOZZR. DAT
Line 31: $ del SCRATCH: [MARQUART]RESTART.DAT;

Line 32: $ purge DISK$AWC_4: [MARQUART.MERCURY]NOZZR. DAT

Line 33: $ goto continue

Line 34: $ norun:

Line 35: $ write sys$output " No run was requested"

Line 36: $ goto exit

Line 37: $ continue:

Line 38: $ exit



Table B.1

Summary of Sample Job File Definitions

Line # Name Dni n
1 COMPILE Flag to indicate that the MERCURY code

is to be compiled.

NOCOMPILE Flag to indicate that the MERCURY code

is not to be compiled.

2 RUN Flag to indicate that the MERCURY code

is to be run.

NORUN Flag to indicate that the MERCURY code

is not to be run.

5 PARA.DAT File name for the file containing parametric

data (number of grid points, etc.) for the

connectivity data set.

6 PARAP.DAT File name for the file containing parametric

data (number of plots) for the plot data

set.

7 CONN.DAT File name for the file containing the

connectivity data relating the grid blocks,

as well as the boundary conditions.

8 PLOT.DAT File name for the file containing the plot

data (i.e. plot variables, plot direction

and frequency, etc.).

9 NCZMERC File name of the file into which the object

code will be saved upon compilation. This

will also be the name of the executable

code.

11 NOZMERC The name of the object file which is to be

linked. Note that this name must match

line 9.

23 NOZZLE.OUT The fRu athname and file name of the file
into which the output of the MERCURY run

is to be written.

24 VNOZZBIN.CST The ful pajnjm and file name of the file



which contains the grid data to be input

to MERCURY.

25 NOZZR.DAT The ful= pathname and file name of the file
which contains the restart data to be input

to MERCURY.

26 NOZMERC The f Dathname and file name of the file

which contains the executable MERCURY code

(must match line 11).

30 RESTART.DAT The fll Dathname and file name of the file

which contains the restart data (written

by MERCURY). Note that this file name

must match that given in the flow solver

data section of the job file.

NOZZR.DAT The fl athname and file name of the file

into which the restart file created by

MERCURY will be copied (must match line

25).

31 RESTART.DAT Same as line 30.

32 NOZZR.DAT Same as line 30.



Appendix C

Sample Connectivity and Plot Data Files

File: PARA.DAT (Part of the Connectivity Data)

C

C

PARAMETER(MAXPT = 26040)

PARAMETER (MAXCELL= 28768)

PARAMETER(MSCELL = 992)

PARAMETER(MIO = 1)

PARAMETER(IBLKS = 2)

PARAMETER(MAXDIM = 31)

PARAMETER (NINT = 1)

PARAMETER(MAXINT = 1)

PARAMETER (MAXBC = 5)

C

File: CONN.DAT (Part of the Connectivity Data)

C
C BLOCK NO. 1 BOUNDARY CONDITIONS

C

NFIL ( i)= 0

C

NUMBC( 1) = 5

C

MBC ( , 1) = 3

ISIDBC( 1, 1) = 1

C

IBC( 1, 1,1) = 1

IBC( 1, 1,2) = 30

IBC( 1, 1,3) = 1

IBC( 1, 1,4) = 28

C



MBC ( 1, 2) - 5

ISIDBC( 1, 2) = 3

C

IBC( 1, 2,1) = 1

IBC( 1, 2,2) = 30

IBC( 1, 2,3) = 1

IBC( 1, 2,4) = 28

C

MBC ( 1, 3) = 5

ISIDBC( 1, 3) = 4

C

IBC( 1, 3,1) = 1

IBC( 1, 3,2) = 30

IBC( 1, 3,3) = 1

IBC( 1, 3,4) = 28

C

MBC ( 1, 4) = 4

ISIDBC( 1, 4) = 5

C

IBC( 1, 4,1) = 1

IBC( 1, 4,2) = 30

IBC( 1, 4,3) = 1

IBC( 1, 4,4) = 30

C

MBC ( 1, 5) = 6

ISIDBC( 1, 5) = 6

C

IBC( 1, 5,1) = 1

IBC( 1, 5,2) = 30

IBC( 1, 5,3) = 1

IBC( 1, 5,4) = 30

C

C BLOCK NO. 2 BOUNDARY CONDITIONS

C

NFIL ( 2)= 0

C



NUMBC( 2)= 5
C

MBC ( 2, 1) = 2

ISIDBC( 2, 1) = 2

C

IBC( 2, 1,1) = 1

IBC( 2, 1,2) = 30

IBC( 2, 1,3) = 1

IBC( 2, 1,4) = 28

C

MBC ( 2, 2) = 5

ISIDBC( 2, 2) = 3

C

IBC( 2, 2,1) = 1

IBC( 2, 2,2) = 31

IBC( 2, 2,3) = 1

IBC( 2, 2,4) = 28

C

MBC ( 2, 3) = 5

ISIDBC( 2, 3) = 4

C

IBC( 2, 3,1) " I

IBC( 2, 3,2) = 31

IBC( 2, 3,3) = 1

IBC( 2, 3,4) = 28

C

MBC ( 2, 4) = 4

ISIDBC( 2, 4) = 5

C

IBC( 2, 4,1) = 1

IBC( 2, 4,2) = 31

IBC( 2, 4,3) - 1

IBC( 2, 4,4) = 30

C

MBC ( 2, 5) = 6

ISIDBC( 2, 5) = 6



cp

IBC( 2, 5, 1) = 1

IBC( 2, 5, 2) = 31

IBC( 2, 5, 3) = 1

IBC( 2, 5, 4) = 30

C

C

File: PARAP.DAT (Part of the Plot Data)

C

PARAMETrER (NUMPLOT= 1)

File: PLOT.DAT (Part of the Plot Data)

C

C

C PLOT FAMILY NO. 1

C

ITYPE( 1)= 1

IBPLOT( 1) = 1

IPPLOT( 1) = 2

INPLOT( 1) = 15

ICP 1) )= -1

IDIR ( 1) = 1

NSKIP( 1) = 4
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SECTION I

INTRODUCTION

This manual describes the use and operation of MERCURY, an Euler

solver developed at WRDC/FIMM. MERCURY is a multiple grid block solver

based on Antony Jameson's [1] finite volume, cell centered, four stage
Runge-Kutta algorithm with blended second and fourth order artificial
dissipation. Implicit residual smoothing (2] and enthalpy damping [1,3)
are used to accelerate convergence to a steady-state. Theoretical
details and optimization techniques of MERCURY are explained in (4].

Capabilities and Limitations of MERCURY

1. MERCURY solves Euler's inviscid, adiabatic equations of fluid motion.
Thus, transport effects (viscosity and thermal diffusion) and heat
addition/subtraction effects cannot be treated. The fluid is assumed to
obey the perfect gas equation of state. Body forces are neglected.

2. MERCURY is optimized for the Cray X-MP class of computers. It has
achieved processing rates of 110 MFLOPS on a 9.5 nanosecond clock cycle
Cray X-MP computer and 125 MFLOPS on an 8.5 nanosecond clock cycle Cray
X-MP machine. The code's peak rates are probably about 3% higher.

3. MERCURY can handle multi-block grids. There is no limit to the
number of grid blocks that can be treated although the maximum number of
grid points that can be treated on the ASD Cray X-MP/12 is nine to ten
million points. In fact, a 6.64 million point grid of 174 blocks has
been solved on the ASD Cray.

4. The largest block treated on the ASD Cray under COS 1.15 contained
over 58,800 points. Under COS 1.17, this size decreases to

approximately 57,000 points.

5. Each grid block must be organized in a right-hand Cartesian
computational coordinate system. Thus, each block will be dimensioned
(IL,JL,KL) where by convention, IL is the dimension of the I-index, JL



is the dimension of the J-index and KL is the dimension of the K-index.
Each grid block is, thus, ordered into KL planes where each plane is
composed of JL lines of IL points.

6. Each block is completely independent of all others with regard to its
computational coordinate system.

7. Each block may intersect an arbitrary number of other blocks. Each
block may intersect itself.

8. The block intersections, or abutments, are surfaces - not volumes.
Thus, block overlap is forbidden.

9. There must be a point-to-point correspondence (zeroth-order
continuity) between the participating blocks of an intersection.
Higher-order continuity across intersections (slope, curvature, etc.),
while not required, improves flow solution accuracy.

10. Any one of the six logical faces of a given block can intersect any
face of another block in any fashion as long as point-to-point

correspondence is preserved.

11. There are six boundary conditions available: far field, sink,
source, solid surface, symmetry and polar singularity. Block
intersections are not considered to be boundary conditions. Boundary
conditions must be placed on block boundary faces only. An arbitrary
number of boundary conditions can be applied to any face of any block.

12. As long as each block is organized as per 5 above, then a block can
be of any physical shape. One or more of a block's six logical boundary
faces can be collapsed to a line or to a point; in so doing a polar
singularity is generated.

13. Boundary conditions and/or intersections are required at every
boundary point of every block.



14. The boundary conditions and block intersection information
(connectivity) exist in a separate file, called the connectivity file.
rhe information in this file, which is actually FORTRAN code, is merged
into MERCURY via the Cray UPDATE utility.

Hardware Requirements

MERCURY is coded in FORTRAN77 specifically for Cray X-MP series
computers with DD49 disks and/or a Solid-state Storage Device (SSD). It
is impractical to run multiple block solvers on less capable machines
because, even with the Cray's fast CPU and input/output (I/O) rates,
cases requiring 30 hours of execution time per flow condition are not
uncommon. To fully utilize the Cray's power, MERCURY uses several Cray-
and site-specific routines. These routines, most of which deal with
I/O, are listed in Appendix A.

Additional Software Requirements

The amount of input data, such as the grid and the connectivity
datasets, for a multi-block Euler solver is tremendous. This data must
meet certain prerequisites if Euler solutions are to be reliably and
routinely obtained. Therefore, the reader is strongly encouraged to use
QBERT [5] to verify that the grid is right-hand, SETUP (described in
Appendix B) to help construct the boundary conditions and connectivity
information for the connectivity file and MERCHEK [6] to verify the
connectivity file. A Cray procedure file, MERCPROC, contains nearly all
the Cray JCL required to operate MERCURY. By using MERCPROC, the user
invokes only one command to run MERCURY. MERCPROC is listed in Appendix
C.

Software exists to convert a MERCURY flow solution dataset into the
format required by the NASA-Ames graphics package, PLOT3D (7]. This
software, MERC2PW*T3D and SENDWKS, is invoked in turn to convert a
binary solution dataset structured for MERCURY into a Silicon Graphics,
Inc. IRIS binary dataset structured for PLOT3D. This software is very
easy to use, the user need only supply the names of the datasets to be
converted, and is not described in this manual.



SECTION II

RUNNING MERCURY: The Overall Process

(1) A grid is created and saved on the Cray disks.
(2) QBERT is run on the grid to ensure that no left-hand regions exist.
(2) A job file is created. The job file contains: a) the Cray JCL
required to run MERCURY and b) $IN, or FORTRAN unit 5; a small input
deck containing global variables such as freestream Mach number, angle
of attack, etc..
(4) SETUP is used to create the connectivity file and the plot file.
MERCURY has the ability to generate various types of plots for
diagnostics.

(5) MERCHEK is run to verify the information in the connectivity file.
(6) A flow solution run is initiated when the job file is submitted to
the Cray. The grid dataset and a restart file are accessed. A restart
file is a file containing the grid coordinate triples and an entire flow
solution (density, momenta and energy) for a specific flow condition.
If the run is the first for a certain flow condition, then a restart
file is unavailable and, hence, MERCURY does not access a restart file
in this instance. Either a previously generated MERCURY executable is
accessed or a new one is created. Upon job completion, a new restart
file is created and saved on the Cray disks. FORTRAN unit 6, or $OUT,
is disposed to the front-end. This dataset contains the run's
convergence history, integrated force and moment coefficients, the plots
specified by the plot file and the Cray dayfile.

The following sections detail each of the above datasets in turn.



SECTION III
IERCURY DATASETS

JOB FILE

The JCL required to run MERCURY is simple and brief. When

operating from a VAX front-end, the entire JCL is:

JOB,JN= ,MFL,T ,SSD ,CL-
ACCOUNT,AC= ,APW= ,US= ,UPW-

OPTION, STAT-OFF.

ACCESS, DN-EXE, PDN-NERCPROC, ID-VAX.

ECHO, OFF-JCL.

CALL, DN-mM.

ECHO, ON-JCL.

RUN,COMPILE,CID,CED, CONNECT.DAT ,DPLOT.DATIA
GRID, GID, GED, RESTART, RID, RED, PERF, DUMP.

EXIT.

DUMPJOB.

DEBUG, BLOCKS.

/EOF

When operating from a CDC front-end, the JCL remains unchanged with the

following two exceptions:

ACCESS, DN-EXE, PDN-ERCPROC, ID-CDC.

and

RUN, COMPILE, CID, CED, CONNECT, PLOT, A

GRID, GID, GED, RESTART, RID, RED, PERF, DUMP.

Thus, when operating from a given front-end, only two cards will be

modified by the user: the JOB and RUN cards.



JOB Card:

Rules of thumb for the time estimate, T- , and SSD requirements,
SSD= , are as follows. The time estimate depends upon the #Runge-
Nutta stages specified in the algorithm control group of $IN (see
below). MERCURY'S typical processing rate on a 9.5 nanosecond Cray X-MP
is 10.0 microseconds per grid point per iteration (mspi) for the three
stage Runge-Kutta scheme, 12.0 mspi for the four stage scheme and 14.0
mspi for the five stage scheme. Thus, if 1000 iterations are desired on
a one million point grid using the four stage scheme, the time estimate
should be approximately:

T = .000012 * (# of grid points) * (f of iterations)

T = 12000

The number of SSD sectors requested should be approximately equal
to the total number of grid points divided by 35.

Thus, for the above example, the JOB card would be:

JOB,JN-EXAMPLE,MFL,T-12000,SSD-30000,CL-

When relatively few iterations are desired (<100), the time
estimate should be padded an additional 10%. With fewer iterations,
normally insignificant operations begin to slow the processing rate.
Also, when a grid is to be read, an additional time increment of
approximately 100 microseconds per grid point is required to read an
ASCII grid dataset. A binary grid dataset requires a time increment of
about 50 microseconds per grid point. Additional details of the grid
dataset, its format and structure, are given in a subsequent section.
If the time request is too short, MERCURY will stop executing and save a
new restart file before exceeding the time limit. Lastly, note that the
maximum amount of core memory is requested by specifying NFL. This is
usually done at WRDC because of the limited memory available on the Cray
X-MP/12.



RUN Card:

The RUN command sets in motion the machinery to run MERCURY. The

thirteen parameters in the RUN command are described below.

COMPILE (Optional): When specified, the connectivity file, plot file

and MERCURY are fetched from the front-end. Through the use of

UPDATE, all three datasets are merged into one deck. This deck is

then compiled under the CFT77 compiler. At WRDC with the Version

3.0 compiler, the compilation times range from 50 to 600 seconds.

The Cray segment loader, SEGLDR, creates an executable which is

saved with a permanent dataset name (PDN) of MERCURY, an identifier

(ID) of CID and an edition level (ED) of CED. If the COMPILE

directive is omitted, an existing executable with ID-CID, ED-CED is

accessed.

CID (optional): -r-cifies the identifier (ID) of the MERCURY executable

to be creat d or accessed.

CED (optional): Specifies the edition (ED) of the MERCURY executable to

be created or accessed.

CONNECT.DAT or CONNECT (optional): This parameter is required when

COMPILE is specified. Specifies the name of the connectivity file

to be fetched from the front-end and included into MERCURY via

UPDATE. Whenever a new connectivity file is to be used, COMPILE
must be specified to create an executable with the new connectivity

information.

PLOT.DAT or PLOT (optional): This parameter is required when COMPILE is
specified. Specifies the name of the plot file to be fetched from
the front-end and included into MERCURY via UPDATE. Whenever a new

plot file is to be used, COMPILE must be specified to create an

executable with the new plotting information.



GRID (Required): Specifies the PDN of the grid dataset saved on the

Cray.

GID (Optional): Specifies the ID of the grid dataset saved on the Cray.

Omit when the grid has no ID.

GED (Optional): Specifies the edition level of the grid dataset saved

on the Cray. Omit when the latest edition is desired.

RESTART (Required): Specifies the PDN of the old restart dataset

accessed on the Cray. Also specifies the PDN of the new restart

file MERCURY creates upon job completion.

RID,RED: Analogous to GID and GED but pertaining to the restart file.

PERF (Optional): When specified, enables the performance monitoring

software of the Cray. The performance statistics, such as NFLOPs,

are output at the bottom of $OUT.

DUMP (Optional): When specified, the old restart file is deleted from

the Cray disks before the new restart is saved.

Let's consider two examples. First, assume a new grid has been
saved on the Cray and new connectivity and plot files have been created
on the VAX front-end. The grid has a PDN of CAPSULE, while the

connectivity and plot files are named CONNCAP.DAT and PLOT.DAT,

respectively. The RUN command will be:

RUN,COMPILE,BICAP,2, 'CONNCAP.DAT', DPLOT.DATI, ^

CAPSULE,, , CAPREST,M80A1B3,,,.

An executable will be created and saved on the Cray with a permanent

dataset name (PDN) of MERCURY, an identifier (ID) of BICAP and an

edition number of two. Upon job completion, a restart file will be

saved with a PDN of CAPREST and an ID of M80AlB3.



As a second example, consider a subsequent run of the above case.
An executable, therefore, already exists. Let's also delete the old

restart file. The RUN command will be:

RUN,,BlCAP,2, ,,CAPSULE, ,,CAPREST,M80A1B3, ,,DUMP.

By definition, SIN is appended to the JCL below an end-of-file
(/EOF). See Figure 1 for a typical job file listing. Note the first
line of SIN is a title which is echoed in $OUT.

The parameters in SIN are read by MERCURY at job initiation. These
parameters are separated into five major groups. The job control group,
consisting of three parameters, tells MERCURY how to access and create
datasets. The 11 parameters of the algorithm control group are, with
one exception, coefficients required by Jameson's algorithm. The flow
condition parameters specify the flow condition to be analyzed. The
eight parameters of the geometry definition group specify the coordinate
system and certain reference parameters used in the calculation of the
integrated force and moment coefficients. The last parameter group is
the block information group which MERCURY uses only to perform very
simple checks against the information in the grid and restart files.
Additionally, when using SETUP to construct the connectivity file, a job
file with the correct block information group is required as input to
SETUP. See Appendix B for additional information regarding SETUP.

The information in $IN is detailed below. All parameters, unless
otherwise noted, are read in a free-field format.

JOB CONTROL GROUP:

Start Option (integer):
0: A grid will be read in and the flow variables will be

initialized to the freestream Mach number, angles of attack and
sideslip and ratio of specific heats defined in the flow
condition group. No restart file is read.

1: A restart file is read in. A grid is not read and the flow
variables are not initialized.



ACCOUNT ,AC3602W2, APISIRAJGU.

OPTION, STAT-PP.
ACSS, DNw.I,ONICPIOCP ID.VAZ.
SCUO IOfl.J.
CALL ,DN1m.3

iC ION-JCL.

RUN, , SAIL, , 'COWDWNT. DAT', 'PLTSARL. DAT'
AILDMRID, WORM,, SARLiES? ,D20 .. W
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1/O DEVICE (O SSD, iIIN)
0
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2: A restart file is read followed by a read of a new grid.

Coordinate triples of the new grid overwrite the old coordinate

triples of the restart file. The flow is not initialized.

Obviously, the new grid must have precisely the same dimensions

as the old grid.

1/0 Device (integer):

0: The SSD is to be used. Ensure SSD is specified in the JOB card

of the JCL. This option is recommended for multi-block grids

due to the SSD's high I/O rate.

1: The disks are to be used. Ensure SSD is not specified in the

JOB card. This option is recommended only when treating single

block grids.

Grid Format Flag (integer):

0: The grid is an unformatted, binary dataset.

1: The grid is in free field ASCII format.

ALGORITHM CONTROL GROUP:

=Runge-Kutta Stages (integer):

Specifies the number of stages the Runge-Kutta integration scheme

is to use. Valid entries are 3, 4, 5 and -1, where -1 invokes the

default value. The default is:

3 stage scheme for time accurate solutions.

4 stage scheme when CFL < 10.

5 stage scheme when CFL k 10.

where CFL is defined below. The 5 stage scheme tends to be the

most efficient scheme of the three except for supersonic flows

and unsteady flows. The 3 stage scheme is the best scheme for

unsteady flows where the CFL should be +1.0. The four stage scheme

is typically the best performer for supersonic flows.



Typical timings for each scheme are:

3 stage - 9.0 to 12.0 microseconds/ (grid point - iteration)

4 stage - 11.0 to 15.0 H .

5 stage = 13.0 to 18.0 " "

-Iterations (integer):
Specifies number of iterations to be performed during current run.

Iterations/Plot (integer):
Specifies frequency of generation of diagnostic plots specified in
the plot file. As an example, plots will be generated every 100
iterations when this value is 100. Entering a -1 invokes a default
value equal to #Iterations. Plots are thus generated only after
the last iteration. Entering a value greater than #Iterations
disables diagnostic plotting.

#Iterations/(Time Step Calculation) (integer):
Specifies frequency of time step calculation. Works in a fashion
analogous to above. Entering -1 invokes the default value of 10
iterations per time step calculation.

CFL (real):
Specifies the Courant-Friedrichs-Lewy number. The following ranges
hold for time independent solutions:

3 stage scheme: CFL < 7.0
4 stage scheme: CFL S 14.0

5 stage scheme: CFL 1 20.0
whereas for time accurate solutions:

3 stage scheme: CFL < 2.0

4 stage scheme: CFL < 2.8
5 stage scheme: CFL < 4.0

The maximum CFL used on any one problem is a function of the flow
conditions and the grid quality. Flows of freestream Mach number
near one and/or poor quality grids require a lower CFL.



Time Accurate (integer):

0: Specifies iteration to a steady state solution. Local time
stepping, enthaply damping and IRS are all employed as convergence
accelerators.

1: Specifies a time accurate solution. Local time stepping,
enthalpy damping and IRS are all disabled. The time step is

calculated every iteration - regardless of the Iterations/(Time

Step Calculation).

Vis2 (real):

Specifies the coefficient of the second order differences that
provide the capability to sharply capture shocks. This coefficient
should fall on the interval (0.,.5]. Entering -1. invokes the

default value of .333.

Vis4 (real):

Specifies the coefficient of the fourth order differences that
provide the dissipation necessary for stability. This coefficient
should fall on the interval (0.,4.). By entering -1., the default
value of 2.0 is invoked.

Smoothing (real):

Specifies the coefficient for implicit residual smoothing (IRS).
IRS accelerates convergence to a steady-state and is not used for
time accurate solutions. This coefficient should fall on the

interval [0.,.75]. Entering -1. invokes the default value of
MIN(.l*CFL,.75) for time independent solutions and 0. for time
accurate solutions.



Damping (real):
Specifies the coefficient of enthalpy damping which also is a
convergence accelerator. This coefficient should fall on the

interval [0.,.15]. Entering -1. invokes the default value which is
0. unless the freestream Mach number is subsonic, the solution is
time independent and the CFL > 2.8. When these conditions are met,
the damping coefficient is exponentially related to CFL.

Transonic Damping (integer):
When a transonic flow contains large supersonic pockets,

convergence can be accelerated dramatically by turning on the
transonic enthalpy damping. Otherwise, the standard enthalpy
damping provides better convergence rates.

The CFL, damping, vis2 and vis4 coefficients can have significant
effects on convergence rate and solution accuracy. When the freestream
Mach number is nearly 1.0, the proper combination of these parameters is
critical to obtaining a flow solution. Fortunately, the default values
work very well for the majority of cases.

FLOW CONDITION GROUP:

Freestream Mach Number (real):

Specifies the freestream Mach number. This is also the Mach number
to which the flow variables are initialized when the start option

is zero.

Freestream Angle of Attack (real):
Specifies angle of attack in degrees of vehicle relative to
freestream. A positive angle of attack rotates the vehicle's nose

upward.

Freestream Angle of Sideslip (real):
Specifies angle of sideslip in degrees of vehicle relative to
freestream. A positive angle of sideslip rotates the vehicle such
that the wind is in the pilot's right ear.



Sink Mach Number (real):

Specifies the Mach number for the outflow boundary conditions. A

value must be input regardless of whether or not a sink boundary

condition exists in the problem. If no sink exists in the domain,

this value is simply read and not used.

Sink Angle of Attack (real):

Specifies angle of attack in degrees of the sink's flow relative to

to the vehicle's coordinate system. Positive 90 degrees orients

the sink's flow such that it exits the domain vertically upward. A

negative entry enables the default value of zero degrees, i.e. the

flow exits the domain parallel to the x-axis.

Sink Angle of Sideslip (real):

Specifies angle of sideslip in degrees of the sink's flow relative
to the vehicle's coordinate system. Positive 90 degrees orients

the sink's flow such that it exits the domain horizontally to the

pilot's left. A negative entry enables the default value of zero

degrees.

Source Mach Number (real):

Specifies Mach number to be enforced at inflow boundary conditions.
Again, regardless of whether or not a source exists in the problem,

a value must be specified.

Source Angle of Attack (real):

Specifies angle of attack in degrees of the source's flow relative
to the vehicle's coordinate system. Positive 90 degrees orients
the source's flow such that it enters the domain vertically upward.

A negative entry enables the default value of zero degrees, i.e.

the flow enters the domain parallel to the x-axis.



Source Angle of Sideslip (real):
Specifies angle of sideslip in degrees of the source's flow
relative to the vehicle's coordinate system. Positive 90 degrees
orients the source's flow such that it enters the domain
horizontally from the pilot's right. A negative entry enables the
default value of zero degrees.

Reference Mach No. for Cp's, Forces and Moments (real):
Specifies the Mach number used in the calculation of Cp's, forces
and moments. The freestream Mach number is the default value and
is invoked by a negative entry.

Ratio of Specific Heats (real):
Specifies gamma, the ratio of specific heats. Entering -1. invokes
the default value of 1.4.

NPR (real):
Specifies the ratio of the source total pressure to the freestream
static pressure to be enforced at the inflow boundary conditions.
Entering -1. invokes the default value which is calculated assuming
isentropic conditions.

GEOMETRY PARAMETER GROUP:

Coordinate System Flag (integer):
0: Specifies that the geometry is defined in the FL057 coordinate

system. See Figure 2.

1: Specifies that the geometry is defined in the panel code
coordinate system. See Figure 2.

Reference Area (real):
Specifies area upon which to base force and moment coefficients.
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I

Moment Reference Point Coordinates (real):
Specifies the x,y,z coordinates of the moment reference point - the
point about which all moments are taken.

X-Moment Reference Length (real):
Specifies the reference length upon which to normalize the moment
about the x-axis. This moment is the rolling moment in both
coordinate systems.

Y-Moment Reference Length (real):

Specifies the reference length upon which to normalize the moment
about the y-axis. In the FL057 coordinate system, this moment is
the yawing moment while in the panel code system, it is the
pitching moment. 4

Z-Moment Reference Length (real):
Specifies the reference length upon which to normalize the moment
about the z-axis. This moment is the pitching moment in the FLO57
coordinate system and the yawing moment in the panel code system.

BLOCK INFORMATION GROUP:

The line "BLOCK INFORMATION" must be entered such that the "B" in
"BLOCK" is placed in column two. This format is required for the proper
operation of SETUP. The first number of this group is the number ot
grid blocks in the grid. Subsequent entries are the I-, J- and K-
dimensions of each grid block.



GRID DATASET

The grid must be created and saved on the Cray disks prior to
running MERCURY. The grid is read in the following manner:

IF(IFORM.EQ.l) THEN

READ (4, *) NBLKS

ELSE

READ(4) NBLKS

END IF

C

DO 10 IB=l,NBLKS

IF(IFORM.EQ.1) THEN

READ(4,*) IL,JL, KL

ELSE

READ(4) IL,JL,KL

END IF

C

DO 5 K-I,KL

DO 5 J=l,JL

DO 5 I=,IL
IF(IFORM.EQ.I) THEN
READ(4,*) X(I,J,K),Y(I,J,K),Z(I,J,K)

ELSE

READ(4) X(I,J,K),Y(I,J,K),Z(I,J,K)

END IF

5 CONTINUE

10 CONTINUE

where: NBLKS = total number of blocks in the grid

IFORM - grid format flag specified in SIN
IL,JL,KL - the I-, J- and K-dimensions of grid block

X,Y,Z - the Cartesian coordinates of each grid point

and the grid coordinate system, j ,jk must be right-hand, i.e. ixj=k,

etc..



RESTART FILE

A restart file is created after each MERCURY job. This dataset

contains the coordinate triples of every point as well as the five flow

variables at every cell. The dataset is read in the following manner:

READ(1) NBLKS

READ (1) TIME, LASTCYC

C

DO 10 IB=l,NBLKS

READ(l) IL,JL,KL

NPT = IL*JL*KL

C

BUFFER IN (1,0) (X(l), X(NPT))

BUFFER IN (1,0) (Y(1), Y(NPT))

BUFFER IN (1,0) (Z(1), Z(NPT))

C

NCELL - (IL+I)*(JL+I)*(KL+I)

BUFFER IN (1,0) (W1(1), W1(NCELL))

BUFFER IN (1,0) (W2(l), W2(NCELL))

BUFFER IN (1,0) (W3(l), W3(NCELL))

BUFFER IN (1,0) (W4(1), W4(NCELL))

BUFFER IN (1,0) (W5(1), W5(NCELL))

IBUF - UNIT(l)

10 CONTINUE

where: NBLKS = number of blocks in the grid

TIME - time; non-zero only for time accurate cases

LASTCYC - iteration number at restart file creation

IL,JL,KL - I-, J- and K-dimensions of grid block

X,Y,Z = Cartesian coordinates of grid point

W1 - density

W2,W3,W4 - x-, y- and z-components of momentum vector

W5 = sum of internal energy and kinetic energy



CONNECTIVITY FILE

The connectivity file is an extremely important file. It

contains: 1) all boundary conditions, 2) all grid block intersections

(connections) and 3) parameters MERCURY needs to set up its memory. Thu

connectivity file is actually FORTRAN code which, through UPDATE, is

merged into the main solver. The connectivity file is clearly segmented

into three sections, each performing one of the above functions. All

information in the connectivity file is of type integer. A description

of each section follows.

BOUNDARY CONDITIONS:

This information, the first section of the connectivity file, is

grouped on a block-by-block basis. At the top of each block's boundary
conditions is the comment:

C BLOCK NO. N BOUNDARY CONDITIONS

where N is the block's number. There are eight boundary condition

parameters per block as described below.

NFIL(N):

Controls the frequency with which the artificial dissipation is
calculated in block N. When equal to 0, artificial dissipation is
calculated only before the first stage of the Runge-Kutta

integration. When equal to 1, the artificial dissipation is
calculated before the first and third stages of the four stage and

three stage Runge-Kutta schemes, whereas it is calculated before

the first two stages of the five stage Runge-Kutta scheme. NFIL is

nearly always 0; setting NFIL to 1 may significantly help

convergence in poor quality grids.

NUMBC(N):
Number of boundary condition regions on block N describable as L by

N surfaces each with a unique boundary condition. Note that block



intersections are = boundary conditions. Boundary conditions,

therefore, are applied only on the covering boundary of the global

grid. Also, boundary conditions can be applied only on a block's

surface - not on its interior. Any number of boundary conditions
can be applied to a given block, and multiple conditions can be

applied to each face.

MBC(N,NUM):

The NUMI boundary condition applied to block N where

1<NUMN<NUMBC(N). Values for MBC are:

1: far field

2: sink
3: source

4: solid surface

5: symmetry surface

6: polar singularity

where a sink is defined to be a region where flow is leaving the
grid domain and a source is defined to be a region where flow is
entering the grid domain. Enforcement of options 1, 2 and 3 is via
an isenthalpic Riemann Invariant procedure [4] whereas options 4

and 5 are enforced by a flow tangency condition. Boundary
condition 6 is required only for proper treatment of the artificial

dissipation in any region where the boundary cells have faces of
zero area. Again, any boundary condition can be applied anywhere

on a block's surface.

ISIDBC(N,NUM):
The face of block N on which the NUMN boundary condition is
applied. Values for ISIDBC are:

1: I-1 computational-plane
2: I=IL computational plane

3: J-1 computational plane

4; J-JL computational plane



5: K-1 computational plane

6: K-KL computational plane

Hereafter, the I-1 computational plane is termed "face 1", the I=IL

plane is termed "face 2", etc.. The next four parameters delimit

the region of the face on which a boundary condition is to be
enforced. Four parameters are required because, on any given face,

two computational indices vary and we must specify the infimum and

extremum for each index.

IBC(N,NUM,1) and IBC(N,NUM,2):

Specify the limits of the computational range of the "first" index

on face ISIDBC(N,NUM). By convention, the "first" index is defined

as follows:

Face Fs Second Index

1 (I1i plane) 3 K
2 (I-IL plane) J K

3 (J=l plane) I K

4 (J-JL plane) I K
5 (K-i plane) I j

6 (K-KL plane) I 3

IBC(N,NUM,3) and IBC(N,NUM,4):

Specify the limits of the computational range of the "second" index

on face ISIDBC(N,NUM). By convention, the "second" index is

defined as above.

For example, consider grid block number 5 whose dimensions are

(14,50,40). It has only one boundary condition, a solid surface

boundary condition applied to the surface where the index K is

everywhere 1 (face 5). Further, the boundary condition is to be

enforced over the intervals 1I<14 and 20J 350. See Figure 3. Lastly
the artificial dissipation is to be calculated only once per Runge-Kutta
step. The boundary condition parameters for this block are thus:



II

NFIL(5) = 0

C
NUMBC(5) 1 1

C

MBC(5, 1) = 4

ISIDBC(5,1) - 5

C

IBC(5,1,1) = 1

IBC(5,1,2) = 14

IBC(5,1,3) = 20

IBC(5,1,4) = 50

Figure 3

Finally, IBC(N,NUM,l) and IBC(N,NUM,3) are not required to be less
than IBC(N,NUM,2) and IBC(N,NUM,4), respectively. The same region in

the above example could have been specified with:

IBC(5,1,1) = 14

IBC(5,1,2) = 1

IBC(5,1,3) - 50

IBC(5,1,4) - 20

Therefore, there are four equally valid ways to specify the region

on which a boundary condition is to be enforced.



BLOCK CONNECTIONS:

Just as the boundary conditions are separated on a block-by-block
basis, the connectivity information is broken out on an intersection-by-
intersection basis. As previously defined, an intersection is a
computational plane (and physical surface) whose grid points are common

to two blocks. Each intersection is headed by the comment line:

C INTERSECTION NO. NI PATCHING INDICES

where NI is the intersection number. In a global grid of NINT
intersections between all the grid blocks, the following 14 parameters
are given for each intersection.

INTER(NI,l) and INTER(NI,2):
The block numbers of the two blocks sharing a common intersection
surface where I<NI<NINT. INTER(NI,l) is the "first" block of
intersection NI and INTER(NI,2) is the "second" block of the
intersection. It does not matter which block of an intersection is
specified as the "first" block.

IPLANE(NI,l) and IPLANE(NI,2):
IPLANE(NI,l) is the face number (of the "first" block) that abuts
face number IPLANE(NI,2) of the "second" block of intersection NI.
The fdce numbering convention is the same as that given in the
boundary condition section.

INDEX(NI,l) and INDEX(NI,2):
Valid entries for these two parameters depend on the value given

IPLANE and are:

MLANE INDEX
1 (I-1 plane) 2 or 3
2 (I=IL plane) 2 or 3

3 (J=l plane) 1 or 3

4 (J-JL plane) 1 or 3



5 (K-1 plane) 1 or 2

6 (K-KL plane) 1 or 2

An INDEX value of 1 denotes the I-direction; 2 denotes the J-

direction; 3 denotes the K-direction. The INDEX parameters

indicate how the two computational indices varying on each block's

abutting face are to be "paired". For example, consider an

intersection between blocks 5 and 3. The intersection is part of

block 5's fourth face and block 3's sixth face. Thus, the indices

I and K of block 5 vary over the intersection whereas indices I and

J of block 3 vary over the intersection. The values given for

INDEX(NI,1) and INDEX(NI,2) determine whether the I-index of block

5 is colinear with, and hence "paired" with, the I-index or the J-

index of block 3. See Figure 4.
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Figure 4



IPNT(NI,l,1) and IPNT(NI,1,2):

The starting and ending coordinates, respectively, of the
computational coordinate defined by INDEX(NI,l) delimiting
intersection NI on face IPLANE(NI,l) of block INTER(NI,l).

IPNT(NI,l,3) and IPNT(NI,I,4):
The starting and ending coordinates, respectively, of the index not

explicitly specified in INDEX(NI,1).

IPNT(NI,2,1) and IPNT(NI,2,2):

Analogous to IPNT(NI,I,1) and IPNT(NI,1,2) but applied to the

"second" block of the intersection.

IPNT(NI,2,3) and IPNT(NI,2,4):

Analogous to IPNT(NI,1,3) and IPNT(NI,1,4) but applied to the

"second" block of the intersection.

It is important to realize that the four computational coordinates
defined by IPNT(NI,l,l-4) are simply the "first" block's coordinates of
two diagonally opposite corner points delimiting intersection NI. The

coordinates defined by IPNT(NI,2,1-4) define the same two Dhvsical

Points in the "second" block's computational coordinates.
As an example, consider that the third intersection occurs between

blocks 5 and 3 who are dimensioned (14,50,40) and (40,40,30),

respectively. Block 5, face 4 abuts block 3, face 6. Assume that
points A and B are two diagonally opposite corner points delimiting the
intersection. See Figure 4. The coordinates of point A in block 5 are
(1,50,20) while in block 3 point A is (40,20,30). The coordinates of
point B in block 5 are (14,50,40) while in block 3, point B is

(20,33,30). Thus, given the fact that a one-to-one correspondence must
exist between the points of each block in an intersection, it is obvious
that the I-index of block 5 is "paired" with the J-index of block 3 (and
the K-index of block 5 is "paired" with the I-index of block 3). It is
up to the user to be familiar with the grid and know how the indices in

each intersection are "paired". The above example intersection could be
specified as follows:



INTER(3,1) - 5

INTER(3,2) - 3

C

IPLANE(3,1) = 4

IPLANE(3,2) = 6

C

INDEX(3,1) = 1

INDEX(3,2) = 2

C

IPNT(3,1,1) = 1

IPNT(3,1,2) = 14

IPNT(3,1,3) = 20

IPNT(3,1,4) - 40

IPNT(3,2,1) - 20

IPNT(3,2,2) = 33

IPNT(3,2,3) = 40

IPNT(3,2,4) - 20

There are 16 possible ways to specify any intersection. This is

due to the following facts:

1) There are four choices for point A: any one of the four corners

of the intersection may be chosen as point A.

2) There are two choices for the "pairing" indices.

3) There are two choices for the "first" block of the intersection.

Thus, an equally valid specification of the example intersection is:

INTER(3,1) - 5

INTER(3,2) - 3

C

IPLANE(3,1) = 4

IPLANE(3,2) - 6

C



INDEX(3,1} - 3

INDEX(3,2) - 1

C

IPNT(3,1,1) = 20

IPNT(3,1,2) = 40

IPNT(3,1,3) = 1

IPNT(3,1,4) = 14

IPNT(3,2,1) = 40

IPNT(3,2,2) = 20

IPNT(3,2,3) = 20

IPNT(3,2,4) = 33

PARAMETERS USED TO ESTABLISH MEMORY:

This section occupies the bottom dozen or so lines of the
connectivity file. There are nine parameters in this section. All are

described below.

MAXCELL:

The greatest number of cells in any grid block. Assuming the

blocks are dimensioned (IL,JL,KL), then MAXCELL is the largest
value of (IL+1)*(JL+I)*(KL+l) for all grid blocks.

MAXPT:
The greatest number of grid points in any grid block. Using the
above convention, MAXPT is the largest value of IL*JL*KL for all
grid blocks.

MSCELL:

The greatest nuLber of cells on any computational plane in any

block. The number of cells on a constant I-plane is (JL+l)*(KL+l)
and similarly for the other faces.

MIO:

The number of 512 word blocks needed to hold the intersection
information on the I/O device. Not used for in-core memory

management. Users should let SETUP calculate MIO.



MAXDIM:

The greatest number of grid points in any one computational

coordinate for all blocks.

I BLKS:

Total number of blocks in the grid.

NINT:

Total number of intersections in the grid.

MAXBC:
The greatest number of boundary conditions applied to any one

block.

MAXINT:
The greatest number of intersections in which any one block

participates.

MERCURY allocates memory via the following dependence on the above

parameters:

Memory Req = 22*MAXCELL + 3*MAXPT + 29*NSCELL + 50*MAXDIM + 15*NINT

+ 16*MAXINT + IBLKS*(6*AXBC + MAXINT + 12) + 1600

Of the nine parameters, only IBLKS must always be precisely

correct. The parameter NINT must also be precisely correct except when

no block connections exist; in this case, NINT equals one. The others
may be greater than or equal to what actually exists in the grid.

However, valuable memory space is wasted when these parameters are not
precisely correct. When SETUP is used to construct the connectivity

file, it calculates the precisely correct values for all nine
parameters. See Appendix B for additional information on SETUP.



PkLTFLE

The user has the ability to generate Cp, Mach number, relative
dynamic pressure, normalized entropy and total pressure loss plots with
MERCURY. These plots are not intended for publication purposes but
rather for diagnostic purposes. The plots are forced to follow the
computational index directions in each block, thus the plots are
typically not along a constant physical plane. The plot file is the
vehicle by which the user tells MERCURY what plots (Cp, Mach #, etc.)
are desired. All entries in the plot file are type integer. Again,
SETUP is used to create the plot file.

The plot file is divided into two sections. The first section
occupies the first two lines of the plot file and lists a parameter
MERCURY requires to set up memory.

NUMPLOT:
Number of plot "families" to be plotted.

The term plot Ofamily" will be defined after describing the second, and
major, section of the plot file. The definition will be much easier to
understand at that point.

Assume that IPT "families" are to be plotted and lIPIPT. The
second section of the plot file contains seven parameters per plot
family IP. These parameters are described below.

ITYPE(IP):

1: Denotes that Cp is to be plotted.
2: Denotes that Mach number is to be plotted.
3: Denotes that the ratio of the local dynamic pressure to the

freestream dynamic pressure is to be plotted.
4: Denotes that normalized entropy production is to be plotted.
5: Denotes that normalized total pressure loss is to be plotted.

IBPLOT(IP):
The block number from which data is to be plotted.



IPPLOT(IP):
1: Specifies that data is to be plotted from a constant I plane.
2: Specifies that data is to be plotted from a constant J plane.
3: Specifies that data is to be plotted from a constant K plane.

INPLOT(IP):

The value of the above constant. For example if IPPLOT = 1 and

INPLOT = 15, then plots are to be taken on the I=15 computational

plane.

ICP(IP):
+1: Specifies data is to be taken from the cells just "above" the

grid plane defined by IPPLOT and INPLOT. Since MERCURY is a finite
volume, cell centered code, data exists not at the grid points but

at the grid cell centers. A cell lies "above" the grid plane
INPLOT when it lies between the planes INPLOT and INPLOT+.
-1: Specifies data is to be taken from the cells just "below" the
grid plane defined by IPPLOT and INPLOT. A cell lies "below" the

grid plane INPLOT when it lies between the planes INPLOT and

INPLOT-l.

IDIR(IP):

Defines which computational coordinate is to be the plot abscissa.
Valid entries depend on IPPLOT.

1 2,3

2 1,3

3 1,2

NSKIP(IP):

The skip frequency of the plots in the computational direction not
specified in IDIR.

As an example, assume that the only plots desired are Cp plots from
the J=l plane of block 4. Thus, NUMPLOT-1. Assume block 4 is
dimensioned (IL,JLKL). We wish to plot the Cp's from the cells just



below the J=l grid plane, i.e. the ghost cells. We also wish the
abscissa of the plots to be the I-direction. Then, since K also varies
on a constant J plane, we can get multiple I-direction plots by letting
NSKIP<KL-1. If NSKIP-l, then we will obtain a plot "family" of KL-1
plots on the J=l plane in block 4. Assume we want plots at every third
cell in the K-direction. The plot file is then:

PARAMETER (NUMPLOT=l)

C
ITYPE(l) 1
IBPLOT(l) = 4
IPPLOT(1) = 2
INPLOT(1) - 1
ICP(1) = 0
IDIR(1) - I
NSKIP(1) = 3

The main purposes of $OUT are to provide a convergence history, to
provide the plots specified by the plot file and to give the integrated
force and moment coefficients. See Appendix D for a partial listing of
$OUT. Parameters specified in $IN are also echoed as is a small amount
of grid information. With the exception of the convergence history,
$OUT is self-explanatory.

Convergence can be measured in several ways. For each block,
MERCURY outputs the maximum residual of mass (not density), the indicial
location of this maximum, the RMS of the mass residuals, the number of
supersonic cells and integrated "forces". The solution is considered
converged when the RNS of the mass residual has dropped four to five
orders of magnitude, the number of supersonic points is constant and the
"forces" are constant. When treating flows where the freestream Mach
number is very nearly one, the RMS of the mass residual may not drop
four to five orders of magnitude yet the number of supersonic points and
the "forces" are constant. Use your judgement to determine whether or
not the solution is sufficiently converged.



The term "forces" is somewhat misleadinq in that it is actually the

force divided by the dynamic pressure. These "forces" are accumulated

from block to block, thus, the actual "forces" due to a certain block
are found by subtracting the "forces" listed at the previous block from
those of the block of interest. For example, from Appendix D, the axial

"force" due to block 4 alone at iteration 45 is -.622E+04 - (-.143E+05)
= +8080.



SECTION IV

GENERAL TIPS ON USING MERCURY

1. The SSD will occasionally be down. In this case, use the disks but

be forewarned that the disk I/O wait time will be approximately twice

the CPU time.

2. Just as the SSD will be down occasionally, so will one or more of

the disks - which, when using disk I/O, causes MERCURY to abort because

it expects all the disks to be operational. In this instance, one must

inspect the Cray dayfile for the device name(s) of the down disk(s).

Then edit the MERCURY source code and search for SUBROUTINE SCRATCH.
Very near the top of this subroutine are instructions regarding how to

remedy the problem.

3. When using the SSD, ensure adequate SSD space has been requested

for the problem at hand. To do this, inspect the very last ten or so

lines of the Cray dayfile. You will see two entries: "Job Limit

(Sectors)" and "Maximum Concurrent Allocation." The number associated

with the job limit is the lowest multiple of 32 that is equal to or

greater than the number of SSD sectors requested on the JOB card in the

JCL. Make sure this number is at least 512 sectors greater than the

number associated with the maximum concurrent allocation. Otherwise,

since the Cray grabs SSD space in groups of 512 sectors, you are not

guaranteed that the I/O has not spilled over onto the disks. Just to be

on the safe side, it is wise to make the job limit at least 1024 sectors

greater than the maximum concurrent allocation.

4. Internal flow problems can be quite difficult. The grid must be of
very high quality (see [5]) and it can take many iterations to converge

the solution. One trick to reduce the number of iterations required for

convergence is to set the freestream Mach number equal to the sink Mach

number. This causes the flow to be initialized to the sink conditions.

This in turn (for some unknown reason) allows a much higher CFL than
when the freestream Mach number and the source Mach number are equal.



5. It is wise to attach straight, constant area extensions to both the

upstream and downstream ends of internal flow problems. This places the

source/sink boundary conditions farther away from the region of interest

and, especially at the upstream end, matches the solid wall boundary

conditions with the source/sink boundary conditions.

6. MERCURY employs a different artificial dissipation scheme at block
boundaries than over block interiors. This boundary dissipation was
chosen for its dissipative characteristics and speed of computation.
The solution errors due to different dissipation schemes are very small
and are swamped by the errors caused by grid spacing changes.

7. Two-dimensional problems can be studied with MERCURY. Stack two
2-D grids together to create a 3-D grid and then apply symmetry boundary

conditions on the two walls defined by the 2-D grids to enforce a 2-D
solution.

8. The far field boundary should be placed five to ten characteristic
lengths away from the vehicle for 3-D problems and 15 to 25
characteristic lengths away for 2-D problems. Characteristic length

refers to the longest dimension of the solid body being studied. Closer
placement of the far field degrades solution accuracy, while more
distant placement needlessly adds grid points.



SECTION V
TROUBLESHOOTING TIPS

"An ounce of prevention is worth a pound of cure." Use QBERT and
MERCHEK faithfully to ensure the correctness of the grid and
connectivity files. Furthermore, develop a knowledge base of QBERT's
cell aspect ratios and grid truncation error estimates correlated with
MERCURY's convergence rate and solution accuracy. See (5] for
additional details. It is possible to generate a grid of such poor
quality (without left-hand regions, however) that given any modest flow
gradients, MERCURY will bomb. This problem can be corrected only by
regenerating a better grid.

However, even when the grid is of adequate quality and the
connectivity file is correct, MERCURY can still abort. When the code
aborts, always check the dayfile in $OUT to learn how it aborted. The
code will bomb in two ways. The first is hardware problems. Hardware
problems can cause any one of four error message types in the dayfile.
The messages are "HARDWARE ERROR", "FLOATING POINT OVERFLOW", "SQUARE
ROOT OF NEGATIVE NUMBER" and "INVALID ARGUMENT TO MATH LIB ROUTINE".
The first two errors are likely due to a problem with an I/O device and
the Cray analyst should be notified. The second two errors can be due
to hardware problems or due to an instability in the flow solution which
grew with time and eventually caused the pressure or density to become
negative. Thus, when faced with errors three or four, first assume the
hardware is not at fault. Then, try in succession:

(1) Lower the CFL.
(2) Vary the damping, vis2 and vis4 coefficients.

(3) Set NFIL to one in the block(s) where the code bombs.
(4) Input a CFL of 1.0 and request a time accurate solution.
(5) If the above do not work and the flow conditions are hypersonic, you
will probably have to give up as MERCURY is not well suited to such
cases. If the case is strictly an internal flow problem, ensure the
flow desired is physically possible.



When trying the above fixes, always check to see how the code

bombs. If the code aborts with a "FLOATING POINT OVERFLOW" one time and

with a "SQUARE ROOT OF A NEGATIVE NUMBER" the next time, the real

culprit of the problems is hardware-related. Lastly, if none of the

above fixes help and hardware problems can be ruled out, the grid is

likely at fault. If problems exist, and the grid is known to be of

adequate quality, contact:

William Z. Strang

WRDC/FIMM

WPAFB, OH 45433-6553

(513) 255-2481



SECTION VI

A multiple grid block Euler code, MERCURY, has been developed using

Jameson's algorithm as its kernel. MERCURY enjoys a great deal of

flexibility in how blocks may intersect. Any block may intersect an

arbitrary number of other blocks, including itself, in any fashion as

long as a one-to-one point correspondence is maintained across the

intersection. Equally flexible boundary conditions and high I/O and CPU

rates have enabled MERCURY to be a versatile and effective performer on

many WRDC/FI and ASD studies. For example, the code has been applied to

the B-1A escape capsule, numerous Subsonic Aerodynamic Research Research

(SARL) wind tunnel flow quality studies, numerous C-135/C-18

MILSTAR/SATCOM configurations, a highly integrated airframe/inlet

conceptual fighter, the F-15E, a delta wing run at .6 Mach and 60

degrees angle of attack, numerous subsonic diffusers, a supersonic duct,

a converging-diverging nozzle run at various NPR's, two-dimensional

airfoils and a ramp run at Mach 15. Freestream Mach numbers have ranged

from .005 to 18, steady and unsteady conditions have been studied, grid

block sizes have ranged from 56 points to 58,800 points and the number

of blocks has ranged from one to 174.



Cray-Specific Routines Used In MERCURY

Routine PuaRose
AQOPEN Open dataset for asynchronous, queued I/O (AQIO)

AQCLOSE Close AQIO dataset

AQREAD Read data from AQIO dataset

AQWRITE Write data to AQIO dataset

AQWAIT Wait for AQIO completion before proceeding

ASSIGN Assign a dataset

BTDL Binary to decimal conversion, left-justified

CLOCK Supply current wall clock time

DATE Supply current date

GETPOS Get dataset position

RELEASE Release dataset

SETPOS Set dataset position

TREMAIN Supply time remaining for job execution

See (8,9,10] for further details.

Site-Specific Code Used In MERCURY

Obiect Prpose

PERFMON Supply MFLOP rating. Located in MERCPROC. See

Appendix C.

I/O Device Names Specify particular I/O devices. Located in

subroutine SCRATCH. See Appendix E.



ID

Running SETUP

SETUP is invoked on the VAX by typing "RUN SETUP". Since SETUP
reads the MERCURY job file, SETUP first requests the job file name. The
user is next asked what he wants to do:

1 CREATE GRID CONNECTIVITY FILE
2 CREATE PLOT INFO FILE

3 DO BOTH

Upon answering with a "1", the user is then asked:
IS THIS A RESTART RUN (O=NO, 1=YES)?

Restart in this case does not apply to the MERCURY run, but rather to
the particular SETUP session. SETUP allows the user to construct the
connectivity file in multiple sessions. Thus, if a portion of a
connectivity file already exists, answer affirmatively to this question.

A short cut exists to aid the user in constructing boundary
conditions that are applied to entire block faces. By entering a 0 for
IBC(N,NUM,1), SETUP calculates the values for IBC(N,NUM,1-4).

Even when no diagnostic plots are desired, a plot file must still
be included into MERCURY via UPDATE. Thus, when SETUP asks how many
plot families are desired, enter "0". A plot file will be created with
NUMPLOT equal to one but without any plotting parameters defined.

All remaining questions should be self-explanatory if the user
understands the connectivity file section in this manual. If a problem
arises first reference the connectivity file section of this manual.



The Cray Procedure File NERCPROC

PROC.
CDC Version RUN,COMP,CID,CED,CONN,PLOT,GRD,GID,GED,RST,RID,RED,PRF,DMP.

IF (&OMP .EQ. ' COPIL')

FETCI,DN=-COMET,SDN=-&CONN,TEXT='GET,&CONN.CTASK,ALL.'.
FETCR,DN=CYfCLONE,SDN=&PLOT,TEXT='GET,&PLOT.CTASK,ALL.'.
FETCH,DN=-CAPRI,SDN=MERCURY,TEXT='ATTAC,MERCURY.CTASK,ALL.'.

UPDAT,P=O,IV-OMET:CYCLONE:CAPRI.
CF'T7,I=ICPL.
SEGLDR,L=O0,CMD='ABS=UERC'.

SAVE, DN=MERC , PDN=MBRCURY, ID=&ACID , ED--4CED.
RELEASE, DNuCONBT: CYCLONE: CAPRI.
RELEASE, DN4CPL: 8NPL : SEL: IINLMN.

ELSE.

ACCEISS, DN-=EC, PDNR=MCURY, ID=&ID ,ED=&C.

RELEASE, DN=PROC.

IF('VPRF.EQ. IPU?')
ACCESS, DN=PUMON, ID=DNCHMRK, OIN=SYSTW.
PERPMON, ON=O.
ENDIF.

ACCESS, DN=RID , PDN=&GI, ID=&QID, ED--&=).
ASSIGN, DN=QRID, A=FT04 ,LM=-200000.

ACCESS ,DN=RESTART, PDN=&RST, ID=-&ID , ED=-&R, NA.
ASSIGN, DN=RESTART , AFTO , LM=20000.

MRC.

IF('&PRF' .EQ. 'PEEP')
PERFON ,REPORT.

IF('&DMP'.EQ. 'DUMP')
ACCESS, DN=A, PDN-kRST, ID-&RID, ED4-RED, UQ, NA.
DELET,DN=A, NA.
RELEASE, DN--A.
BRIF.
SAVE, DN=REST, PDN-&RST, ID=-&II.

WM.



PROC.
RUN, COMP,CID ,CED ,CONN,PLOT, GRD, GD, GED ,RST, RID, RED ,PRF, DVP.

VAX Version *-
IF('kCOMfp'.EQ. 'COHPILE')

FETCH, DN=-COMET ,TEXT=ACONN.
FETC, DN=-CYCLONE, TEXT=kPLDT.
FETCH, DN=-CAPRI ,TEXT= 'MCURY. FOR'.

UPDATE,P=O,I=-COMT:CYCLONE:CAPRI.
CFT77,I=SCPL.
SEGLDR,L=-O,CIMD='ABS=UERC'.

SAVE, DN=MEBRC , PDN=UECURY, ID--&CID , ED-ACED.
RELEASE,DN=COiIET:CYCLONE:CAPRI.
RELEASE,DN=SCPL:SNPL:SBLD:SININE.

ELSE.

ACCESS, DN=MERC , PDN=IIERCURY, IDACID, D=&CED.

ENDIDF. -WC

IF('&PU'.EzQ. TPul')
ACCESS, DW=ERFMON, ID=-BNCHMRK, ,O=SYSTI.
PUPION, ON=O.

ACCESS, DN=-GRID , PDN=IGRD, ID=&GID , ED--G=.
ASSIGN, DN=GRID , A=FTO4 ,LM=20000

ACCESS, DN=RESTART , PDN=&RST, ID=-&RID, ED=IRED , NA.
ASSIGN ,DN=-RESTART ,A=FO1 , LM=200000.

M~C.

IF ('&PRF'.EQ. 'PR?'1)
PERFEON, REPRT.
EDIF.

IF ('&DIP'. EQ.- 'DUMP'1)
ACCESS, D&IAPDN-&RST, ID-=ARID M=E UQ t NA.
DRUMTEv DN=A, N A.
RELK1jASEDN=A.
EDIF.

SAVE,DN=REST,PDN-&RST,ID=kRID.

INDPROC.
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MERCURY Subroutines

MERCURY'S subroutines are functionally grouped as follows:

Main Program

Routines to set up the problem

Flow solution ruutines

Boundary condition routines

I/O routines

Convergence measurement routines

Miscellaneous output routines

Within each group, the subroutines are alphabetized.

MAIN PROGRAM

PROGRAM MERCURY - Coordinates efforts of all subroutines; reads $IN,

writes $OUT, calculates force and moment

coefficients.

ROUTINES TO SET UP THE PROBLEM

SUBROUTINE INIT - Initializes flow variables.

SUBROUTINE KONNECT - Holds connectivity information and boundary

conditions; sets addresses for random access I/O.

SUBROUTINE METRIC - Calculates the cell volume reciprocals for time

accurate solutions only. Calculates unit normals
on the six faces of every block.

SUBROUTINE SCRATCH - Establishes random access scratch files on I/O
device(s).



SUBROUTINE SETUP - Coordinates routines involved with setting up the

current problem (XIN, WIN, METRIC and STEP).

SUBROUTINE SSFLAG - Sets flags in cells adjacent to a solid surface

boundary condition.

SUBROUTINE WIN - Reads in the five flow variables from the restart

file.

SUBROUTINE XIN - Reads in coordinate triples from either the grid

file or the restart file.

FLOW SOLUTION ROUTINES

SUBROUTINE EULER - The main work routine; sums fluxes; integrates in

time; applies enthalpy damping; calculates

residuals; calls artificial dissipation routine

(FILTER); calls IRS routine (PSMOO)

SUBROUTINE FILTER - Calculates the artificial dissipation needed for

stability.

SUBROUTINE PSMOO - Implicitly smoothes residuals to accelerate

convergence to a steady-state.

SUBROUTINE STEP - Calculates ratio of cell time step to cell volume

for time independent solutions. Calculates the

global minimum time step for time accurate flows.

BOUNDARY CONDITION ROUTINES

SUBROUTINE BC - Calls the three boundary condition routines,

RIEMANN, SOLID and POLE.

SUBROUTINE POLE - Properly loads data into ghost cells in regions

where boundary cells have zero face area. The



loading ensures proper application of the

artificial dissipation at a polar singularity.

SUBROUTINE RIEMANN - Enforces far field, sink and source boundary

conditions via an isenthalpic Riemann Invariant

procedure.

SUBROUTINE SOLID - Calculates the pressure on solid surfaces and

symmetry planes.

I/O ROUTINES

SUBROUTINE BLKIN - Inputs grid, flow, metric and time step variables

from scratch files.

SUBROUTINE BLKOUT - Outputs grid, flow, metric and time step variables

to scratch files.

SUBROUTINE IN - Main intersection variables input routine.

SUBROUTINE OUT - Main intersection variables output routine.

SUBROUTINE SWAP - Manages data when a block abuts itself.

CONVERGENCE MEASUREMENT ROUTINES

SUBROUTINE CONVRG - Calculates maximum and RMS mass residuals and

number of supersonic cells. Calls FORCMOM.

SUBROUTINE FORCMOM - Calculates integrated forces and moments.

MISCELLANEOUS OUTPUT ROUTINES

SUBROUTINE DIAGNOS - Holds plot file; generates data for plotting.

SUBROUTINE PLOT - Makes the actual plots of Cp, Mach No., etc.



SUBROUTINE SAVESOL - Writes grid and flow variables to new restart file.
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